Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Последовательность чисел {xn} задана условиями:

x1 $\displaystyle \geqslant$ - a,        xn + 1 = $\displaystyle \sqrt{a+x_n}$.

Докажите, что последовательность {xn} монотонна и ограничена. Найдите ее предел.

Вниз   Решение


На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб  O – точка пересечения отрезков PR и QS.
Докажите,что если  AP : AB = DR : DC  и  AS : AD = BQ : BC,  то и  SO : SQ = AP : ABPQ : PR = AS : ;AD.

ВверхВниз   Решение


Докажите, что при любых целых a и натуральном n выражение  (a + 1)2n+1 + an+2  делится на  a² + a + 1.

ВверхВниз   Решение


Игра ``Шоколадка''. Имеется шоколадка, состоящая из 6×8 = 48 долек. Одна из долек отмечена:


\begin{picture}
(80,42)\multiput(0,0)(0,7){7}{\line(1,0){80}}
\multiput(0,0)(10,0){9}{\line(0,1){42}} \put(23,8.5){$x$}
\end{picture}
Двое игроков по очереди разламывают ее по какой-нибудь прямой, делящей шоколадку на дольки, и съедают ту половину, которая не содержит отмеченной дольки. Проигрывает тот, кто не может сделать хода, то есть ему остается лишь одна отмеченная долька.
а) Опишите выигрышную стратегию в этой игре. Кто из игроков выиграет при данных начальных условиях?
б) При каких размерах шоколадки начинающий игрок выигрывает при любом расположении отмеченной дольки?
в) При каких размерах шоколадки начинающий игрок проигрывает при любом расположении отмеченной дольки?

ВверхВниз   Решение


В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, чтобы выполнялись следующие условия:
  а) двигаясь по стрелкам, можно добраться от каждой вершины до любой другой;
  б) для каждой вершины числа входящих и выходящих рёбер равны.

ВверхВниз   Решение


Можно ли составить решётку, изображённую на рисунке
  а) из пяти ломаных длины 8?
  б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)

ВверхВниз   Решение


Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

ВверхВниз   Решение


Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.

ВверхВниз   Решение


Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO $ \leq$ 2MO.

ВверхВниз   Решение


Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Обозначим его через  ν(a, b).  Докажите, что величина  ν(a, b)  связана с  μ(a, b)  (см. задачу 61322) равенством  ν(a, b)·μ(1/a, 1/b) = 1.

ВверхВниз   Решение


Пусть a и b – два положительных числа, и  a < b.  Определим две последовательности чисел {an} и {bn} формулами:

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).

  а) Докажите, что обе эти последовательности имеют общий предел.
Этот предел называется арифметико-гармоническим средним чисел a и b.
  б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b.
  в) Пусть  a = 1,  b = k.  Как последовательность {bn} связана с последовательностью {xn} из задачи 61299?

ВверхВниз   Решение


Ним-сумма. Будем говорить, что число n является ним-суммой чисел m и k ( m $ \oplus$ k = n), если оно получается из чисел m и k после следующих преобразований.
1) m и k записываются в двоичной системе счисления

m = (ms...m1m0)2,        k = (ks...k1k0)2

(меньшее число дополняется спереди нулями).
2) Полученные наборы цифр как векторы складываются покомпонентно по модулю 2:

(ms,..., m1, m0) + (ks,..., k1, k0) $\displaystyle \equiv$ (ns,..., n1, n0)(mod 2).

3) Набор цифр (ns,..., n1, n0) переводится в число n:

(ns...n1n0)2 = n.


Например, 4 $ \oplus$ 7 = 3, так как

4 = (100)2,    7 = (111)2,    (1, 0, 0) + (1, 1, 1) $\displaystyle \equiv$ (0, 1, 1)(mod 2),    (011)2 = 3.

Докажите, что ним-сумма удовлетворяет следующим свойствам:
а) m $ \oplus$ m = 0; б) m $ \oplus$ k = k $ \oplus$ m; в) (m $ \oplus$ t) $ \oplus$ k = m $ \oplus$ (t $ \oplus$ k);
г) если n$ \ne$ 0 и

m1 $\displaystyle \oplus$ m2 $\displaystyle \oplus$...$\displaystyle \oplus$ ml = n, (5.1)

то найдется такой номер j ( 1 $ \leqslant$ j $ \leqslant$ l), для которого mj $ \oplus$ n < mj.

ВверхВниз   Решение


На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 140]      



Задача 104029

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 2-
Классы: 7,8

а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов.
б) Из новой фигуры уберите 3 спички так, чтобы осталось только 3 квадрата.

Прислать комментарий     Решение

Задача 104030

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 2
Классы: 7,8

Сколько квадратов изображено на рисунке?

Прислать комментарий     Решение

Задача 111235

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 5,6,7

Маша посмотрела на рисунок и сказала: "Здесь нарисовано семь прямоугольников: один большой и шесть маленьких". "Здесь есть еще различные средние прямоугольники" – сказала мама. Сколько же всего прямоугольников на этом рисунке? Ответ объясните.

Прислать комментарий     Решение


Задача 116471

Темы:   [ Геометрия на клетчатой бумаге ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 5,6

В точке В живёт Винни-Пух, а в точках К, С, П и И – его друзья Кролик, Сова, Пятачок и ослик Иа-Иа (см. рисунок).

Зимним утром Винни-Пух навестил их всех по одному разу, а потом вернулся домой. При этом он протоптал в снегу пять прямых тропинок от домика к домику, не пересекающих друг друга. Начертите как можно больше возможных маршрутов Винни-Пуха.

Прислать комментарий     Решение

Задача 104065

Темы:   [ Геометрия на клетчатой бумаге ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 6,7,8

Наташа сделала из листа клетчатой бумаги календарь на январь 2006 года (см. рисунок) и заметила, что центры клеток 10, 20 и 30 января образуют равнобедренный прямоугольный треугольник. Наташа предположила, что это будет верно и в любом другом году, за исключением тех лет, когда центры клеток 10, 20 и 30 лежат на одной прямой. Права ли Наташа?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .