Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 563]
|
|
Сложность: 3+ Классы: 8,9,10
|
Через центр окружности ω
1 проведена окружность ω
2;
A и B — точки пересечения окружностей. Касательная к
окружности ω
2 в точке B пересекает окружность ω
1
в точке C. Докажите, что AB = BC.
Дана окружность с диаметром AB. Вторая окружность с центром
в точке A пересекает первую в точках C и D, а диаметр AB – в точке E. На дуге CE, не содержащей точки D, взята точка M, отличная от точек C и E. Луч BM пересекает первую окружность в точке N. Известно, что CN = a, DN = b. Найдите MN.
Дана окружность с диаметром PQ. Вторая окружность с центром в точке Q пересекает первую в точках S и T, а диаметр PQ в точке A. AB – диаметр второй окружности. На дуге SB, не
содержащей точки T, взята точка C, отличная от точек S и B. Отрезок PC пересекает первую окружность в точке D. Известно, что
SD = n, DC = m. Найдите DT.
В трапеции
ABCD угол
BAD равен 60
o, а меньшее основание
BC
равно 5. Найдите длину боковой стороны
CD, если площадь трапеции
равна (
AD . BC +
AB . CD)/2.
Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC (∠B = 90°), касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 563]