Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 159]
В равнобедренную трапецию, основания которой равны a и b (a > b), можно вписать окружность.
Найдите расстояние между центрами вписанной и описанной около этой трапеции окружностей.
|
|
Сложность: 4- Классы: 8,9,10
|
Точки K, L, M и N на сторонах AB, BC, CD и DA квадрата ABCD образуют еще один квадрат. DK пересекает NM в точке E, а KC пересекает LM в точке F.
Докажите, что EF || AB.
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC M – середина стороны BC, P – точка пересечения касательных в точках B и C к описанной окружности, N – середина отрезка MP. Отрезок AN пересекает описанную окружность в точке Q. Докажите, что ∠PMQ = ∠MAQ.
|
|
Сложность: 4 Классы: 9,10,11
|
Вписанная окружность разностороннего треугольника ABC касается стороны AB в точке C'. Окружность с диаметром BC' пересекает вписанную окружность вторично в точке A1, а биссектрису угла B вторично в точке A2. Окружность с диаметром AC' пересекает вписанную окружность вторично в точке B1, а биссектрису угла A вторично в точке B2. Докажите, что прямые AB, A1B1, A2B2 пересекаются в одной точке.
Вписанная окружность касается сторон AB и AC треугольника ABC в точках X и Y соответственно. Точка K– середина дуги AB описанной окружности треугольника ABC (не содержащей точки C). Оказалось, что прямая XY делит отрезок AK пополам. Чему может быть равен угол BAC?
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 159]