ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

AA1, BB1, CC1 – высоты треугольника ABC,  B0 – точка пересечения BB1 и описанной окружности Ω, Q – вторая точка пересечения Ω и описанной окружности ω треугольника A1C1B0. Докажите, что BQ – симедиана треугольника ABC.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 211]      



Задача 79507

Темы:   [ Теория алгоритмов (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9,10

По поляне, имеющей форму равностороннего треугольника со стороной 100 м, бегает волк. Охотник убивает волка, если стреляет в него с расстояния не более 30 м. Доказать, что охотник может убить волка, как бы быстро тот ни бегал.
Прислать комментарий     Решение


Задача 52716

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная, отрезок которой внутри треугольника равен b.
Найдите площадь треугольника, отсечённого этой касательной.

Прислать комментарий     Решение

Задача 64920

Темы:   [ Построения одной линейкой ]
[ Против большей стороны лежит больший угол ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 9,10,11

На плоскости начерчен треугольник и в нём отмечены две точки. Известно, что какой-то из углов треугольника равен 58°, какой-то из остальных – 59°, какая-то из отмеченных точек является центром вписанной окружности, а другая – центром описанной. Используя только линейку без делений, определите, где какой угол и где какая точка.

Прислать комментарий     Решение

Задача 65009

Темы:   [ Вписанные и описанные окружности ]
[ Прямоугольные треугольники (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9,10

В треугольнике ABC проведена высота AH. Точки Ib и Ic – центры вписанных окружностей треугольников ABH и CAH; L – точка касания вписанной окружности треугольника ABC со стороной BC. Найдите угол LIbIc.

Прислать комментарий     Решение

Задача 65429

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 9,10,11

Вписанная окружность прямоугольного треугольника АВС (угол С – прямой) касается сторон АВ, ВС и СА в точках С1, А1, В1 соответственно. Высоты треугольника А1В1С1 пересекаются в точке D. Найдите расстояние между точками C и D, если длины катетов треугольника АВС равны 3 и 4.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 211]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .