ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 499]      



Задача 65361

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол равен половине центрального ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9,10,11

Окружность, проходящая через вершины A, B и точку пересечения высот треугольника ABC, пересекает стороны AC и BC во внутренних точках.
Докажите, что  60° < ∠C < 90°.

Прислать комментарий     Решение

Задача 65989

Темы:   [ Тетраэдр (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Прислать комментарий     Решение

Задача 98148

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9

В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

Прислать комментарий     Решение

Задача 98593

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

Прислать комментарий     Решение

Задача 102501

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD  BC || AD,  ∠ABC = 90°.  Прямая, перпендикулярная стороне CD, пересекает сторону AB в точке M, а сторону CD – в точке N. Известно также, что  MC = a,  BN = b, а расстояние от точки D до прямой MC равно c. Найдите расстояние от точки A до прямой BN.

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .