ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 165]      



Задача 111899

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
Сложность: 3
Классы: 6,7,8

Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Прислать комментарий     Решение

Задача 54740

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9

В деревне у прямой дороги с интервалами в 50 метров стоят четыре избы A, B, C и D. В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

Прислать комментарий     Решение

Задача 66138

Темы:   [ Вписанные и описанные окружности ]
[ Экстремальные свойства окружности и криволинейных фигур ]
[ Неравенство треугольника (прочее) ]
[ Связь величины угла с длиной дуги и хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

Прислать комментарий     Решение

Задача 78133

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны точки A и B. Построить такой квадрат, чтобы точки A и B лежали на его границе и сумма расстояний от точки A до вершин квадрата была наименьшей.
Прислать комментарий     Решение


Задача 104098

Темы:   [ Симметрия помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .