|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске написаны N ≥ 9 различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких N это возможно? |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 402]
Стороны параллелограмма равны a и b, а угол между ними равен
Докажите, что биссектрисы внешних углов параллелограмма при пересечении образуют прямоугольник, диагональ которого равна сумме двух соседних сторон параллелограмма.
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты соответственно точки M, N, K, L, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что при пересечении прямых AN, BK, CL и DM получится параллелограмм, причём его центр совпадает с центром параллелограмма ABCD.
На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что ∠AOP = ∠COQ = ∠ABC.
В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 402] |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|