Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 829]
|
|
Сложность: 3+ Классы: 9,10
|
Бильярдный стол имеет вид прямоугольника 2×1, в углах и на серединах больших сторон которого расположены лузы. Какое наименьшее число шаров надо расположить внутри прямоугольника, чтобы каждая луза находилась на одной линии с некоторыми двумя шарами?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке.
Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если ∠A = 60°, то траектория шарика проходит через центр описанной окружности треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник и 10 прямых. Оказалось, что каждая прямая равноудалена от каких-то двух вершин треугольника.
Докажите, что или две из этих прямых параллельны, или три из них пересекаются в одной точке.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан правильный шестиугольник с центром $O$. Провели шесть равных окружностей с центрами в вершинах шестиугольника так, что точка $O$ находится внутри окружностей. Угол величины α с вершиной $O$ высекает на этих окружностях шесть дуг. Докажите, что суммарная величина этих дуг равна 6α.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 829]