|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть ABCD – вписанный четырёхугольник, O – точка пересечения диагоналей AC и BD . Пусть окружности, описанные около треугольников ABO и COD , пересекаются в точке K . Точка L такова, что треугольник BLC подобен треугольнику AKD . Докажите, что если четырёхугольник BLCK выпуклый, то он он является описанным. |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 543]
Окружность, вписанная в прямоугольный треугольник с катетами 6 и 8, касается гипотенузы в точке M. Найдите расстояние от точки M до вершины прямого угла.
В трапеции ABCD боковая сторона AD перпендикулярна основаниям и равна 9, CD = 12, а отрезок AO, где O — точка пересечения диагоналей трапеции, равен 6. Найдите площадь треугольника BOC.
Площадь прямоугольного треугольника ABC (
Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 543] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|