Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Вниз   Решение


В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если  BD = 6,  AD : DC = 2 : 7.

ВверхВниз   Решение


x, y – числа из отрезка  [0, 1].  Докажите неравенство  

ВверхВниз   Решение


Внутри треугольника ABC нашлись такие точки P и Q, что точка P удалена от прямых AB, BC, CA на расстояния 6, 7 и 12 соответственно, а точка Q удалена от прямых AB, BC, CA на расстояния 10, 9 и 4 соответственно. Найдите радиус вписанной окружности треугольника ABC.

ВверхВниз   Решение


В треугольник с периметром, равным 20, вписана окружность. Отрезок касательной, проведённый к окружности параллельно основанию, заключённый между сторонами треугольника, равен 2,4. Найдите основание треугольника.

ВверхВниз   Решение


2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка.
Докажите, что мальчик может выбирать конфеты так, чтобы две последние конфеты оказались из одной коробки.

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]      



Задача 55155

Темы:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.

Прислать комментарий     Решение


Задача 55194

Темы:   [ Неравенства с медианами ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Пусть a, b, c — стороны произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ac)

Прислать комментарий     Решение


Задача 55211

Темы:   [ Неравенства с высотами ]
[ Неравенство треугольника ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

Пусть h1 и h2 — высоты треугольника, r — радиус вписанной окружности. Докажите, что $ {\frac{1}{2r}}$ < $ {\frac{1}{h_{1}}}$ + $ {\frac{1}{h_{2}}}$ < $ {\frac{1}{r}}$.

Прислать комментарий     Решение


Задача 55222

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

Проведите через вершину A остроугольного треугольника ABC прямую так, чтобы она не пересекала сторону BC и чтобы сумма расстояний до неё от вершин B и C была наибольшей.

Прислать комментарий     Решение


Задача 55160

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите,что площадь любого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .