Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 484]
На одной из сторон угла взяты две точки A и B. Найдите на
другой стороне угла точку C такую, чтобы угол ACB был наибольшим.
Постройте точку C с помощью циркуля и линейки.
С помощью циркуля и линейки постройте треугольник, если на плоскости
отмечены три точки:
O — центр описанной окружности,
P — точка
пересечения медиан и
H — основание одной из высот этого треугольника.
С помощью циркуля и линейки постройте треугольник, если дана
одна его вершина и три прямых, на которых лежат его биссектрисы.
|
|
Сложность: 4 Классы: 9,10,11
|
Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.
|
|
Сложность: 4+ Классы: 9,10,11
|
Углы AOB и COD совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB – с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы AOE и DOF равны.
Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 484]