ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 88]      



Задача 109877

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9,10

Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.).

Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.

Прислать комментарий     Решение

Задача 73706

Темы:   [ Построения одной линейкой ]
[ Теорема Пифагора (прямая и обратная) ]
[ Правильные многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Шестиугольники ]
Сложность: 4-
Классы: 8,9

Автор: Аляев А.В.

На плоскости нарисован правильный шестиугольник, длина стороны которого равна 1. При помощи одной только линейки постройте отрезок, длина которого равна  

Прислать комментарий     Решение

Задача 79319

Темы:   [ Системы точек ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Гомотетия помогает решить задачу ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9,10

Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки?

Прислать комментарий     Решение

Задача 108044

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.

Прислать комментарий     Решение

Задача 109895

Темы:   [ Теория игр (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 7,8,9

Автор: Дужин Ф.С.



В одном из узлов шестиугольника со стороной n , разбитого на правильные треугольники (см. рис.) , стоит фишка. Двое играющих по очереди передвигают ее в один из соседних узлов, причем запрещается ходить в узел, в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода. Кто выигрывает при правильной игре?
Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .