ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 189]      



Задача 86964

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11


Диагональ прямоугольного параллелепипеда равна 13, а диагонали боковых граней равны 4$ \sqrt{10}$ и 3$ \sqrt{17}$. Найдите его объем.

Прислать комментарий     Решение


Задача 86965

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11


Диагональ прямоугольного параллелепипеда равна a и составляет с одной гранью угол 30o, а с другой 45o. Найдите его объем.

Прислать комментарий     Решение


Задача 78107

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Периодичность и непериодичность ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
[ Пространственные многоугольники ]
Сложность: 3+
Классы: 10,11

В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

Прислать комментарий     Решение

Задача 79342

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Параллельность прямых и плоскостей ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3+
Классы: 10,11

В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Прислать комментарий     Решение


Задача 79554

Темы:   [ Признаки перпендикулярности ]
[ Раскраски ]
[ Параллельность прямых и плоскостей ]
Сложность: 3+
Классы: 10,11

В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .