ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 87061

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Двугранный угол ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде ABCD известно, что CD = a , а перпендикуляр, опущенный из середины ребра AB на CD , равен b и образует равные углы α с гранями ACD и BCD . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87062

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.
Прислать комментарий     Решение


Задача 87065

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 4
Классы: 8,9

Докажите, что все грани тетраэдра равны (т.е. тетраэдр – равногранный) тогда и только тогда, когда точка пересечения медиан и центр описанной сферы совпадают.
Прислать комментарий     Решение


Задача 87066

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Ортоцентрический тетраэдр ]
Сложность: 4
Классы: 8,9

Дана треугольная пирамида ABCD . Скрещивающиеся рёбра AC и BD этой пирамиды перпендикулярны. Также перпендикулярны скрещивающиеся ребра AD и BC , а AB = CD . Все рёбра этой пирамиды касаются шара радиуса r . Найдите площадь грани ABC .
Прислать комментарий     Решение


Задача 109256

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Точки E и F являются серединами отрезков AB и CD соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите угол между скрещивающимися прямыми AB и CD , если известно, что угол ACB равен arccos , AB = 4 , CD = 6 и EF = .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .