ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 87117

Тема:   [ Неравенства с трехгранными углами ]
Сложность: 3
Классы: 8,9

Верно ли, что в сечении любого трёхгранного угла плоскостью можно получит правильный треугольник?
Прислать комментарий     Решение


Задача 87634

Тема:   [ Неравенства с трехгранными углами ]
Сложность: 3
Классы: 10,11

В каких пределах может изменяться плоский угол трёхгранного угла, если два других плоских угла соответственно равны: а) 70o и 100o ; б) 130o и 150o ?
Прислать комментарий     Решение


Задача 109286

Темы:   [ Неравенства с трехгранными углами ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Все плоские углы трёхгранного угла прямые. Докажите, что любое его сечение, не проходящее через вершину, есть остроугольный треугольник.
Прислать комментарий     Решение


Задача 109288

Темы:   [ Неравенства с трехгранными углами ]
[ Тетраэдр и пирамида ]
Сложность: 3
Классы: 10,11

Докажите, что в любой треугольной пирамиде найдётся вершина, при которой все плоские углы острые.
Прислать комментарий     Решение


Задача 35247

Темы:   [ Неравенства с трехгранными углами ]
[ Пространственные многоугольники ]
Сложность: 3+
Классы: 10,11

Докажите, что сумма углов ABC, BCD, CDA, DAB пространственного четырехугольника ABCD составляет не больше 3600.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .