ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC (AB = BC) медианы AM и CN пересекаются в точке D под прямым углом. Найдите все углы треугольника ABC и его основание AC, если площадь четырёхугольника NBMD равна 4.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1435]      



Задача 116903

Темы:   [ Ортоцентр и ортотреугольник ]
[ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB.

Прислать комментарий     Решение

Задача 55265

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике с боковой стороной, равной 4, проведена медиана к боковой стороне. Найдите основание треугольника, если медиана равна 3.

Прислать комментарий     Решение


Задача 55266

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

Основание равнобедренного треугольника равно 4$ \sqrt{2}$, а медиана, проведённая к боковой стороне, равна 5. Найдите боковые стороны.

Прислать комментарий     Решение


Задача 102454

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) медианы AM и CN пересекаются в точке D под прямым углом. Найдите все углы треугольника ABC и площадь четырёхугольника NBMD, если основание AC = 1.

Прислать комментарий     Решение


Задача 102699

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) медианы AM и CN пересекаются в точке D под прямым углом. Найдите все углы треугольника ABC и его основание AC, если площадь четырёхугольника NBMD равна 4.

Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .