ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

а) Впишите в клеточки четыре различные цифры, чтобы произведение дробей равнялось 20/21.

Решите эту задачу для трёх других арифметических действий:
б) деления;
в) вычитания;
г) сложения.

Вниз   Решение


В квадрате со стороной 1 расположена ломаная длиной L. Известно, что каждая точка квадрата удалена от некоторой точки этой ломаной меньше чем на  $ \varepsilon$. Докажите, что тогда  L $ \geq$ $ {\frac{1}{2\varepsilon }}$ - $ {\frac{\pi\varepsilon }{2}}$.

ВверхВниз   Решение


а) Постройте треугольник ABC, зная три точки A', B', C', в которых биссектрисы его углов пересекают описанную окружность (оба треугольника остроугольные).
б) Постройте треугольник ABC, зная три точки A', B', C', в которых высоты треугольника пересекают описанную окружность (оба треугольника остроугольные).

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 2 : 1, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.

ВверхВниз   Решение


Решите уравнение  (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 416]      



Задача 104055

Темы:   [ Разложение на множители ]
[ Уравнения в целых числах ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 7,8,9

У отца спросили, сколько лет двум его сыновьям. Отец ответил, что если к произведению их возрастов добавить сумму этих возрастов, то получится 34.
Сколько лет сыновьям?

Прислать комментарий     Решение

Задача 105078

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Уравнения высших степеней (прочее) ]
Сложность: 3
Классы: 7,8,9

Решите уравнение  (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.

Прислать комментарий     Решение

Задача 111261

Темы:   [ Разложение на множители ]
[ Показательные уравнения ]
Сложность: 3
Классы: 9,10,11

Найдите все положительные корни уравнения  xx + x1–x = x + 1.

Прислать комментарий     Решение

Задача 115713

Темы:   [ Разложение на множители ]
[ Уравнения в целых числах ]
[ Монотонность и ограниченность ]
Сложность: 3
Классы: 8,9,10,11

Существуют ли такие натуральные x и y, что  x4y4 = x³ + y³?

Прислать комментарий     Решение

Задача 115998

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Докажите, что ни при каких натуральных значениях x и y число  x8x7y + x6y² – ... – xy7 + y8  не является простым.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .