ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Отличник Поликарп заполнил клетки таблицы цифрами так, что сумма цифр, стоящих в каждых трёх соседних клетках, равнялась 15, а двоечник Колька стёр почти все цифры. Сможете ли вы восстановить таблицу? Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости? На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL . Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся? Наташа и Инна купили по одинаковой коробке чая в пакетиках. Известно, что одного пакетика хватает на две или три чашки чая. Этой коробки Наташе хватило на 41 чашку чая, а Инне – на 58. Сколько пакетиков было в коробке? В выпуклом четырёхугольнике ABCD диагонали BD и AC равны стороне AB . Найдите угол BCD и сторону AB , если угол CDA – прямой, BC=4 , AD=5 . В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно. По кругу записано больше трех натуральных чисел, сумма которых равна 37. Известно, что суммы любых трех последовательных чисел равны между собой. Какие числа написаны по кругу? Гулливер попал в страну лилипутов, имея 7000000 рублей. На все деньги он сразу купил кефир в бутылках по цене 7 рублей за бутылку (пустая бутылка стоила в то время 1 рубль). Выпив весь кефир, он сдал бутылки и на все вырученные деньги сразу купил кефир. При этом он заметил, что и стоимость кефира, и стоимость пустой бутылки выросли в два раза. Затем он снова выпил весь кефир, сдал бутылки, на все вырученные деньги снова купил кефир и т. д. При этом между каждыми двумя посещениями магазина и стоимость кефира, и стоимость пустой бутылки возрастали в два раза. Сколько бутылок кефира выпил Гулливер? Хозяин обещает работнику платить в среднем Окружность с центром на стороне AC равнобедренного треугольника ABC (AB = BC) касается сторон AB и BC. Петя играет в игру-стрелялку. Если он наберёт менее 1000 очков, то компьютер добавит ему 20% от его результата. Если он наберёт от 1000 до 2000 очков, то компьютер добавит ему 20% от первой тысячи очков и 30% от оставшегося количества очков. Если Петя наберёт более 2000 очков, то компьютер добавит ему 20% от первой тысячи очков, 30% от второй тысячи и 50% от оставшегося количества. Сколько призовых очков получил Петя, если по окончании игры у него было 2370 очков? В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 126]
В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.
На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?
В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?
В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
Вокруг экватора натянули верёвку. Затем её удлинили на 1 см и опять натянули, приподняв в одном месте.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 126]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке