ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD – ромб. На стороне BC взята точка P. Через точки A, B и P проведена окружность, которая пересекается с прямой BD ещё раз в точке Q. Через точки C, P и Q проведена окружность, которая пересекается с BD ещё раз в точке R. Докажите, что точки A, R и P лежат на одной прямой. Решение |
Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1275]
Четырёхугольник ABCD – ромб. На стороне BC взята точка P. Через точки A, B и P проведена окружность, которая пересекается с прямой BD ещё раз в точке Q. Через точки C, P и Q проведена окружность, которая пересекается с BD ещё раз в точке R. Докажите, что точки A, R и P лежат на одной прямой.
В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC (AB = BC). Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.
Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей вне треугольника, расположена точка K так, что расстояния от неё до продолжений сторон AC и BC равны 39 и 156 соответственно. Найдите расстояние от точки K до прямой AB.
Треугольник ABC вписан в окружность с центром O, X – произвольная точка внутри треугольника ABC, для которой ∠XAB = ∠XBC = φ, а P – такая точка, что PX ⊥ OX, ∠XOP = φ, причём углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.
Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|