ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1275]      



Задача 102379

Темы:   [ Вспомогательные подобные треугольники ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности касаются внешним образом в точке A. Прямая, проходящая через точку A, пересекает первую окружность в точке B, а вторую окружность – в точке C. Касательная в точке B к первой окружности пересекает вторую окружность в точках D и E (точка D лежит между B и E). Известно, что
AB = 5  и  AC = 4.  Найдите длину отрезка CE и расстояние от точки A до центра окружности, касающейся отрезка AD и продолжений отрезков ED и EA за точки D и A соответственно.

Прислать комментарий     Решение

Задача 102380

Темы:   [ Вспомогательные подобные треугольники ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Две окружности касаются внешним образом в точке K. Прямая, проходящая через точку K, пересекает первую окружность в точке L, а вторую – в точке M. Касательная к первой окружности, проходящая через точку L, пересекает вторую окружность в точках A и B (точка B лежит между A и L). Известно, что  BM = 3  и  KM = 1.  Найдите длину отрезка KL и расстояние от точки L до центра окружности, касающейся отрезка KB и продолжений отрезков AB и AK за точки B и K соответственно.

Прислать комментарий     Решение

Задача 102505

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

Середины высот треугольника ABC лежат на одной прямой. Наибольшая сторона треугольника  AB = 10 см.
Какое максимальное значение может принимать площадь треугольника ABC?

Прислать комментарий     Решение

Задача 103938

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ ГМТ - прямая или отрезок ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.

Прислать комментарий     Решение

Задача 105205

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .