ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям:  l || BC,  l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 64806

Темы:   [ Построение треугольников по различным элементам ]
[ Прямая Эйлера и окружность девяти точек ]
[ Поворот помогает решить задачу ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 4
Классы: 9,10

Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.

Прислать комментарий     Решение

Задача 108079

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Элементарные (основные) построения циркулем и линейкой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть M – середина стороны BC треугольника ABC. Постройте прямую l, удовлетворяющую следующим условиям:  l || BC,  l пересекает треугольник ABC; отрезок прямой l, заключённый внутри треугольника, виден из точки M под прямым углом.

Прислать комментарий     Решение

Задача 64737

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Точка Лемуана ]
[ Угол между касательной и хордой ]
[ Подерный (педальный) треугольник ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 5-
Классы: 8,9,10

В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .