ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



Задача 108140

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Удвоение медианы ]
Сложность: 4
Классы: 8,9

Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.

Прислать комментарий     Решение

Задача 108227

Темы:   [ Вспомогательные подобные треугольники ]
[ Описанные четырехугольники ]
[ Подобные фигуры ]
[ Удвоение медианы ]
[ Углы между биссектрисами ]
[ Признаки и свойства параллелограмма ]
[ Параллелограмм Вариньона ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Прислать комментарий     Решение

Задача 65053

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

Прислать комментарий     Решение

Задача 66017

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Теорема синусов ]
[ Медиана, проведенная к гипотенузе ]
[ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Автор: Обухов Б.

В остроугольном треугольнике ABC проведены медиана AM и высота BH. Перпендикуляр, восстановленный в точке M к прямой AM, пересекает луч HB в точке K. Докажите, что если  ∠MAC = 30°,  то  AK = BC.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .