ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 507]      



Задача 108177

Темы:   [ Правильные многоугольники ]
[ Вписанные и описанные окружности ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

Прислать комментарий     Решение

Задача 111470

Темы:   [ Правильные многоугольники ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

Прислать комментарий     Решение

Задача 111472

Темы:   [ Правильные многоугольники ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны S1 и S2. Найдите площадь третьего.

Прислать комментарий     Решение

Задача 116072

Темы:   [ Вписанные и описанные многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10,11

Bыпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник вписанный?

Прислать комментарий     Решение

Задача 66967

Темы:   [ Пятиугольники ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9,10

В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .