ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC на высоте BK как на диаметре построена окружность S, пересекающая стороны AB и BC в точках E и F соответственно. К окружности S в точках E и F проведены касательные. Докажите, что их точка пересечения лежит на прямой, содержащей медиану треугольника ABC, проведённую из вершины B.

   Решение

Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 563]      



Задача 116950

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Автор: Ивлев Ф.

В окружность Ω вписан остроугольный треугольник ABC, в котором  AB > BC.  Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.

Прислать комментарий     Решение

Задача 108191

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Точка Лемуана ]
Сложность: 4+
Классы: 9,10,11

В остроугольном треугольнике ABC на высоте BK как на диаметре построена окружность S, пересекающая стороны AB и BC в точках E и F соответственно. К окружности S в точках E и F проведены касательные. Докажите, что их точка пересечения лежит на прямой, содержащей медиану треугольника ABC, проведённую из вершины B.

Прислать комментарий     Решение

Задача 64366

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Симметрия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 10,11

Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

Прислать комментарий     Решение

Задача 66146

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Точка Лемуана ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 5
Классы: 9,10,11

В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой.

Прислать комментарий     Решение

Задача 116491

Темы:   [ Геометрические неравенства (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 7,8,9

В окружности с центром O проведена хорда AB и радиус OK, пересекающий её под прямым углом в точке M. На большей дуге AB окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что  KR > MQ.

Прислать комментарий     Решение

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .