ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если известно, что AH = , а BL = 3 Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 541]
В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а BL — медианой в треугольнике BHC. Найдите угол LBC, если известно, что BL = 4 и AH =
В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если известно, что AH = , а BL = 3
Два квадрата ABCD и KLMN расположены так, что вершины B, C, K и N лежат на одной прямой, а четыре оставшиеся расположены по разные стороны от BC и лежат на одной окружности. Известно, что сторона одного из квадратов на 1 больше стороны другого. Найдите расстояние от центра окружности до прямой BC.
Сторона AB параллелограмма ABCD равна 2, ∠A = 45°. Точки E и F расположены на диагонали BD, причём ∠AEB = ∠CFD = 90°, BF = 3/2 BE.
Сторона AB параллелограмма ABCD равна , ∠A = arccos . Точки E и F расположены на диагонали BD, причём ∠AEB = ∠CFD = 90°, BF = 3BE. Найдите площадь параллелограмма.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 541] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|