Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

Вниз   Решение


Среди комплексных чисел p , удовлетворяющих условию  |p – 25i| ≤ 15,  найти число с наименьшим аргументом.

ВверхВниз   Решение


В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


ВверхВниз   Решение


Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

ВверхВниз   Решение


Мальвина велела Буратино умножить число на 4 и к результату прибавить 15, а Буратино умножил число на 15 и потом прибавил 4, однако, ответ получился верный. Какое это было число?

ВверхВниз   Решение


Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.

ВверхВниз   Решение


Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 20.

ВверхВниз   Решение


Пусть M={x1, .., x30} – множество, состоящее из 30 различных положительных чисел; An ( 1 n 30 ) – сумма всевозможных произведений различных n элементов множества M . Докажите, что если A15>A10 , то A1>1 .

ВверхВниз   Решение


Сравните числа:  А = 2011·20122012·201320132013  и  В = 2013·20112011·201220122012.

ВверхВниз   Решение


Автобусный билет будем считать счастливым, если между его цифрами можно в нужных местах расставить знаки четырёх арифметических действий и скобки так, чтобы значение полученного выражения равнялось 100. Является ли счастливым билет N123456?

ВверхВниз   Решение


У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.

ВверхВниз   Решение


Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.

ВверхВниз   Решение


В пирамиде ABCD плоские углы DAB , ABC , BCD – прямые. Вершины M , N , P , Q правильного тетраэдра расположены соответственно на рёбрах AC , BC , AB , BD пирамиды ABCD . Ребро MN параллельно ребру AB . Найдите отношение объёмов правильного тетраэдра MNPQ и пирамиды ABCD

ВверхВниз   Решение


Автор: Фольклор

Оля и Максим оплатили путешествие по архипелагу из 2009 островов, где некоторые острова связаны двусторонними маршрутами катера. Они путешествуют, играя. Сначала Оля выбирает остров, на который они прилетают. Затем они путешествуют вместе на катерах, по очереди выбирая остров, на котором еще не были (первый раз выбирает Максим). Кто не сможет выбрать остров, проиграл. Докажите, что Оля может выиграть.

ВверхВниз   Решение


Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2, Одинаковы и равны $ \sqrt{2}$. Найдите диагонали четырёхугольника.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]      



Задача 77909

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9

Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.
Прислать комментарий     Решение


Задача 108528

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2$ \sqrt{2}$, одинаковы и равны 2. Найдите четвёртую сторону.

Прислать комментарий     Решение


Задача 108529

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2, Одинаковы и равны $ \sqrt{2}$. Найдите диагонали четырёхугольника.

Прислать комментарий     Решение


Задача 54328

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В окружности проведены хорды AB и BC, причём AB = $ \sqrt{3}$, BC = 3$ \sqrt{3}$, $ \angle$ABC = 60o. Найдите длину той хорды окружности, которая делит угол ABC пополам.

Прислать комментарий     Решение


Задача 102217

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4-
Классы: 8,9

Биссектрисы внутренних углов треугольника продолжены до точек пересечения с описанной около треугольника окружностью, отличных от вершин исходного треугольника. В результате попарного соединения этих точек получился новый треугольник. Известно, что углы исходного треугольника равны 30o, 60o и 90o, а его площадь равна 2. Найдите площадь нового треугольника.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .