Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC медианы AA' , BB' и CC' продлили до пересечения с описанной окружностью в точках A0 , B0 и C0 соответственно. Известно, что точка M пересечения медиан треугольника ABC делит отрезок AA0 пополам. Докажите, что треугольник A0B0C0 – равнобедренный.

Вниз   Решение


В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что  AX = BC.

ВверхВниз   Решение


В трапеции ABCD с большим основанием BC и площадью, равной 4 , прямые BC и AD касаются окружности диаметром 2 в точках B и D соответственно. Боковые стороны трапеции AB и CD пересекают окружность в точках M и N соответственно. Длина MN равна . Найдите величину угла MDN и длину основания BC .

ВверхВниз   Решение


Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.

ВверхВниз   Решение


Автор: Фольклор

Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?

ВверхВниз   Решение


Докажите, что прямые  y = k1x + l1  и  y = k2x + l2  параллельны тогда и только тогда, когда   k1 = k2  и  l1l2.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 4229]      



Задача 102707

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.

Прислать комментарий     Решение


Задача 102708

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.

Прислать комментарий     Решение


Задача 102723

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.

Прислать комментарий     Решение


Задача 108538

Темы:   [ Метод координат на плоскости ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Докажите, что прямые  y = k1x + l1  и  y = k2x + l2  параллельны тогда и только тогда, когда   k1 = k2  и  l1l2.

Прислать комментарий     Решение

Задача 108548

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.

Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 4229]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .