ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка. В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна a, Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный. Найдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n. В выпуклом четырёхугольнике ABCD AB = BC. Лучи BA и CD пересекаются в точке E, а лучи AD и BC – в точке F. Известно также, что BE = BF и Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке. Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В треугольнике ABC прямые, содержащие высоты AP, CR, и BQ (точки
P, R и Q лежат на прямых, содержащих соответствующие стороны треугольника ABC),
пересекаются в точке O. Найдите площади треугольников ABC и POC, если известно, что
RP параллельно AC, AC = 4 и
sin
Докажите, что любой квадратный трёхчлен можно представить в виде суммы двух квадратных трёхчленов с нулевыми дискриминантами.
Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.
|
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 4229]
Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.
Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.
Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.
Докажите, что прямые y = k1x + l1 и y = k2x + l2 параллельны тогда и только тогда, когда k1 = k2 и l1 ≠ l2.
Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 4229]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке