Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.

ВверхВниз   Решение


Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

ВверхВниз   Решение


В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

ВверхВниз   Решение


Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём  BM || KD.  Докажите, что площади треугольника KFD и трапеции KBMD равны.

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 460]      



Задача 108624

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что  

Прислать комментарий     Решение

Задача 108677

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём  BM || KD.  Докажите, что площади треугольника KFD и трапеции KBMD равны.

Прислать комментарий     Решение

Задача 54366

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В равнобедренной трапеции ABCD углы при основании AD равны 30o, диагональ AC является биссектрисой угла BAD. Биссектриса угла BCD пересекает основание AD в точке M, а отрезок BM пересекает диагональ AC в точке N. Найдите площадь треугольника ANM, если площадь трапеции ABCD равна 2 + $ \sqrt{3}$.

Прислать комментарий     Решение


Задача 54367

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В равнобедреной трапеции ABCD углы при основании AD равны 45o, диагональ AC является биссектрисой угла BAD. Биссектриса угла BCD пересекает основание AD в точке K, а отрезок BK пересекает диагональ AC в точке Q. Найдите площадь треугольника ABQ, если площадь трапеции ABCD равна 3 + 2$ \sqrt{2}$.

Прислать комментарий     Решение


Задача 54993

Темы:   [ Параллелограмм Вариньона ]
[ Отношения площадей ]
Сложность: 4
Классы: 8,9

Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.

Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .