ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Решите уравнение:
1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : x))))).
Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе. Сколько человек в семье?
а) Многоугольник обладает следующим свойством: если провести прямую через
любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен? Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь. Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа a² + 2cd + b² и c² + 2ab + d² являются полными квадратами. Имеется пять звеньев цепи по три кольца в каждом. Даны шесть слов:
Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB, S ≠ A, AB = BS. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным? Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна ½ AC² sin∠A. Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC? Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии. В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника. На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG. |
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 598]
Докажите, что все числа 10017, 100117, 1001117, ... делятся на 53.
Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.
Вот ребус довольно простой:
Разрежьте по клеточкам квадрат 7×7 на девять прямоугольников (не обязательно различных), из которых можно будет сложить любой прямоугольник со сторонами, не превосходящими 7.
Найдите число нулей, на которое оканчивается число 11100 – 1.
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 598]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке