ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Параллелограммы
>>
Частные случаи
>>
Ромбы. Признаки и свойства
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть AL – биссектриса треугольника ABC. Через вершины B и C проведены параллельные прямые b и c, равноудалённые от вершины A. На прямых b и c выбраны соответственно такие точки M и N, что отрезки LM и LN пересекаются со сторонами соответственно AB и AC и делятся ими пополам. |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 173]
На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что AF < BD.
Четырёхугольник ABCD – ромб. На стороне BC взята точка P. Через точки A, B и P проведена окружность, которая пересекается с прямой BD ещё раз в точке Q. Через точки C, P и Q проведена окружность, которая пересекается с BD ещё раз в точке R. Докажите, что точки A, R и P лежат на одной прямой.
Пусть AL – биссектриса треугольника ABC. Через вершины B и C проведены параллельные прямые b и c, равноудалённые от вершины A. На прямых b и c выбраны соответственно такие точки M и N, что отрезки LM и LN пересекаются со сторонами соответственно AB и AC и делятся ими пополам.
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего n-угольника с его вершинами, делят n-угольник на n равных треугольников.
Дана линейка с параллельными краями и без делений. Постройте центр окружности, некоторая дуга которой дана на чертеже.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 173] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|