ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны два бикфордова шнура, каждый из которых горит ровно минуту, если его поджечь с одного конца (но сгорать может неравномерно). Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м. Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC. На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK. Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q. Найдите геометрическое место точек пересечения высот треугольников, у которых даны середина одной стороны и основания высот, опущенных на две другие. Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся ребра равны c . Найдите радиус описанной сферы. Рассматриваются всевозможные квадратные трёхчлены вида x² + px + q, где p, q – целые, 1 ≤ p ≤ 1997, 1 ≤ q ≤ 1997. В выпуклом шестиугольнике ABCDEF отрезки AB и CF, CD и BE, EF и AD попарно параллельны. В треугольнике ABC известно, что BC = 2AC. На стороне BC выбрана точка D, для которой ∠CAD = ∠B. Прямая AD пересекает биссектрису внешнего угла при вершине C в точке E. Докажите, что AE = AB. |
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 604]
В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. На отрезке A1C1 выбрали такие точки A2 и C2, что отрезок B1A2 делится высотой CC1 пополам и пересекает высоту AA1 в точке K, а отрезок B1C2 делится высотой AA1 пополам и пересекает высоту CC1 в точке L. Докажите, что KL || AC.
В треугольнике ABC известно, что BC = 2AC. На стороне BC выбрана точка D, для которой ∠CAD = ∠B. Прямая AD пересекает биссектрису внешнего угла при вершине C в точке E. Докажите, что AE = AB.
В выпуклом четырёхугольнике ABCD угол ABD равен 65°, угол CBD равен 35°, угол ADC равен 130°, и AB = BC. Найдите углы четырёхугольника ABCD.
Отрезок, соединяющий вершину A треугольника ABC с центром Q вневписанной окружности, касающейся стороны BC, пересекает описанную окружность треугольника ABC в точке D. Докажите, что треугольник BDQ – равнобедренный.
Дан равнобедренный треугольник ABC с вершиной A. Длина прыжка кузнечика равна основанию BC. Известно, что начиная движение из точки C, кузнечик за 22 прыжка оказался в точке A, приземляясь после каждого прыжка на боковой стороне треугольника ABC и чередуя стороны при каждом прыжке, кроме последнего. Найдите углы треугольника ABC, если известно, что с каждым прыжком кузнечик приближался к точке A.
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке