ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника. Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах.
Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.
S = ab sin
где a и b — соседние стороны параллелограмма,
В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат: В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке. Три равные окружности радиуса R пересекаются в точке M . Пусть A , B и C – три другие точки их попарного пересечения. Докажите, что: а) радиус окружности, описанной около треугольника ABC , равен R ; б) M – точка пересечения высот треугольника ABC . Докажите, что если при инверсии относительно некоторой окружности с центром O окружность S переходит в окружность S' , то O — один из центров гомотетии окружностей S и S' . На окружности, касающейся сторон угла с вершиной O , выбраны две диаметрально противоположные точки A и B (отличные от точек касания). Касательная к окружности в точке B пересекает стороны угла в точках C и D , а прямую OA — в точке E . Докажите, что BC=DE . Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой. Из точек A и B , лежащих на разных сторонах угла, восставлены перпендикуляры к сторонам, пересекающие биссектрису угла в точках C и D . Докажите, что середина отрезка CD равноудалена от точек A и B . B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности. Два противоположных ребра единичного куба лежат на основаниях цилиндра, а остальные вершины - на боковой поверхности цилиндра. Одна из граней куба образует с основаниями цилиндра угол α ( α < 90o) . Найдите высоту цилиндра. Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 . Докажите, что прямая, пересекающая одну из двух параллельных плоскостей, пересекает и другую. ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| . Найти углы треугольника, если известно, что все вписанные в него квадраты равны (каждый из квадратов вписан так, что две его вершины лежат на одной из сторон треугольника, а остальные вершины на двух других сторонах треугольника). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]
Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что ∠AKM = ∠CKL. Докажите, что MA = MB.
Найти углы треугольника, если известно, что все вписанные в него квадраты равны (каждый из квадратов вписан так, что две его вершины лежат на одной из сторон треугольника, а остальные вершины на двух других сторонах треугольника).
В равнобедренный треугольник вписана окружность. Точки касания делят каждую боковую сторону на отрезки длиной m и n, считая от вершины. К окружности проведены три касательные, параллельные каждой из сторон треугольника. Найдите длины отрезков касательных, заключённых между сторонами треугольника.
Диагональ AC трапеции ABCD делит её на два подобных треугольника. Докажите, что AC² = ab, где a и b – основания трапеции.
В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы
треугольников BDC и ADC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 78]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке