ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в любой другой, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более k дорог. При каких k это возможно? Докажите равенство Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F . Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной? Точка D – середина бокового ребра CC1 треугольной призмы ABCA1B1C1 . Прямые AB1 , BC и DA1 попарно перпендикулярны. Найдите высоту призмы, если AB = BC= AB1 =a . Докажите, что n³ – n делится на 24 при любом нечётном n.
Сфера, касающаяся верхнего основания цилиндра, имеет единственную общую
точку с окружностью его нижнего основания и делит ось цилиндра в отношении
2:6:1, считая от центра одного из оснований. Найдите объём цилиндра, если
известно, что сфера касается двух его образующих, находящихся на
расстоянии Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя? Последовательность многочленов P0(x) = 1, P1(x) = x, P2(x) = x² – 1, ... задается условием
Pn+1(x) = xPn(x) – Pn–1(x). В пространстве проведены две параллельные прямые и пересекающие эти прямые две параллельные плоскости. Докажите, что четыре точки пересечения прямых и плоскостей служат вершинами параллелограмма. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 402]
В выпуклом шестиугольнике ABCDEF противоположные стороны попарно параллельны (AB || DE, BC || EF, CD || FA), а также AB = DE.
Точки P , Q , R и S – середины сторон соответственно AB , BC , CD и DA выпуклого четырёхугольника ABCD , M – точка внутри этого четырёхугольника, причём APMS – параллелограмм. Докажите, что CRMQ – тоже параллелограмм.
Точка D взята на медиане BM треугольника ABC. Через точку D проведена прямая, параллельная стороне AB, а через точку C – прямая, параллельная медиане BM. Две проведённые прямые пересекаются в точке E. Докажите, что BE = AD.
В пространстве проведены две параллельные прямые и пересекающие эти прямые две параллельные плоскости. Докажите, что четыре точки пересечения прямых и плоскостей служат вершинами параллелограмма.
На стороне AC треугольника ABC взята точка D так, что AD : DC = 1 : 2. Докажите что у треугольников ADB и CDB есть по равной медиане.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 402]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке