ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколько корней имеет уравнение sin x=x/100 ?

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 210]      



Задача 109774

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические уравнения ]
[ Производные высших порядков ]
[ Методы математического анализа (прочее) ]
Сложность: 4+
Классы: 10,11

Пусть α , β , γ , τ – такие положительные числа, что при всех x

sinα x+ sinβ x= sinγ x+ sinτ x.

Докажите, что α=γ или α=τ .
Прислать комментарий     Решение

Задача 61250

Темы:   [ Тригонометрия (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4+
Классы: 10,11

Пусть

uk = $\displaystyle {\dfrac{\sin2nx\cdot\sin(2n-1)\cdot
x\ldots\cdot\sin(2n-k+1)x}{\sin
kx\cdot\sin(k-1)x\cdot\ldots\cdot\sin x}}$.

Докажите, что числа uk можно представить в виде многочлена от cos x.

Прислать комментарий     Решение

Задача 76515

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Некоторые из чисел a1, a2,...an равны +1, остальные равны -1. Доказать, что

2 sin$\displaystyle \left(\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots
+\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right.$a1 + $\displaystyle {\frac{a_1a_2}{2}}$ + $\displaystyle {\frac{a_1a_2a_3}{4}}$ + ... + $\displaystyle {\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}$$\displaystyle \left.\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots
+\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi}{4}}$ =
         = a1$\displaystyle \sqrt{2+a_2\sqrt{2+a_3\sqrt{2+\dots +a_n\sqrt{2}}}}$.

В частности, при a1 = a2 = ... = an = 1, имеем:

2 sin$\displaystyle \left(\vphantom{ 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}}\right.$1 + $\displaystyle {\textstyle\frac{1}{2}}$ + $\displaystyle {\textstyle\frac{1}{4}}$ + ... + $\displaystyle {\frac{1}{2^{n-1}}}$$\displaystyle \left.\vphantom{ 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi}{4}}$ = 2 cos$\displaystyle {\frac{\pi}{2^{n+1}}}$ =
         = $\displaystyle \sqrt{2+\sqrt{2+\dots +\sqrt{2}}}$.

Прислать комментарий     Решение

Задача 76526

Тема:   [ Тригонометрические неравенства ]
Сложность: 4+
Классы: 10,11

Доказать, что если $ \alpha$ и $ \beta$ — острые углы и $ \alpha$ < $ \beta$, то

$\displaystyle {\frac{{\rm tg}\alpha}{\alpha}}$ < $\displaystyle {\frac{{\rm tg}\beta}{\beta}}$.

Прислать комментарий     Решение

Задача 109152

Темы:   [ Тригонометрические уравнения ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4+
Классы: 9,10,11

Сколько корней имеет уравнение sin x=x/100 ?
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .