Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Вниз   Решение


На плоскости задано n точек, являющихся вершинами выпуклого n-угольника,  n > 3.  Известно, что существует ровно k равносторонних треугольников со стороной 1, вершины которых – заданные точки.
  а) Докажите, что  k < 2n/3.
  б) Приведите пример конфигурации, для которой  k > 0,666n.

ВверхВниз   Решение


На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

ВверхВниз   Решение


Точка X, лежащая вне непересекающихся окружностей ω1 и ω2, такова, что отрезки касательных, проведённых из X к ω1 и ω2, равны. Докажите, что точка пересечения диагоналей четырёхугольника, образованного точками касания, совпадает с точкой пересечения общих внутренних касательных к ω1 и ω2.

ВверхВниз   Решение


Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8.

ВверхВниз   Решение


Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 76526

Тема:   [ Тригонометрические неравенства ]
Сложность: 4+
Классы: 10,11

Доказать, что если $ \alpha$ и $ \beta$ — острые углы и $ \alpha$ < $ \beta$, то

$\displaystyle {\frac{{\rm tg}\alpha}{\alpha}}$ < $\displaystyle {\frac{{\rm tg}\beta}{\beta}}$.

Прислать комментарий     Решение

Задача 109573

Темы:   [ Тригонометрические неравенства ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.
Прислать комментарий     Решение


Задача 109838

Темы:   [ Тригонометрические неравенства ]
[ Иррациональные неравенства ]
[ Возрастание и убывание. Исследование функций ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 10,11

Докажите, что sin< при 0<x< .
Прислать комментарий     Решение


Задача 109860

Темы:   [ Тригонометрические неравенства ]
[ Геометрические интерпретации в алгебре ]
[ Векторы помогают решить задачу ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 5
Классы: 10,11

Для углов α , β , γ справедливо равенство sinα + sinβ + sinγ 2 . Докажите, что cosα + cosβ + cosγ .
Прислать комментарий     Решение


Задача 109435

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 9,10,11

Что больше:     или   ?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .