ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)

   Решение

Задачи

Страница: << 188 189 190 191 192 193 194 >> [Всего задач: 1221]      



Задача 109171

Темы:   [ Средние величины ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10,11

Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.

Прислать комментарий     Решение

Задача 109504

Темы:   [ Теория алгоритмов (прочее) ]
[ Полуинварианты ]
[ Обратный ход ]
Сложность: 4-
Классы: 8,9,10

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет ещё одну карту, и так сколько угодно раз, пока сам не скажет "стоп". Может ли Фукс добиться того, чтобы после "стопа" каждая карта наверняка оказалась не там, где была вначале?

Прислать комментарий     Решение

Задача 109523

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Квадратный трехчлен (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10,11

Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

Прислать комментарий     Решение

Задача 109583

Темы:   [ Геометрия на клетчатой бумаге ]
[ Деление с остатком ]
[ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 7,8,9

Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

Прислать комментарий     Решение

Задача 109591

Темы:   [ Математическая логика (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)

Прислать комментарий     Решение

Страница: << 188 189 190 191 192 193 194 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .