ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 110782

Темы:   [ Свойства разверток ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с трехгранными углами ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 4
Классы: 9,10,11

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Прислать комментарий     Решение


Задача 116574

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.).

Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?

Прислать комментарий     Решение

Задача 110186

Темы:   [ Свойства разверток ]
[ Симметричная стратегия ]
[ Куб ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Прислать комментарий     Решение


Задача 109646

Темы:   [ Свойства разверток ]
[ Цилиндр ]
[ Раскраски ]
Сложность: 5
Классы: 10,11

Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.
Прислать комментарий     Решение


Задача 115375

Темы:   [ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 2+
Классы: 5,6,7

Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .