ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



Задача 73680

Темы:   [ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Средние величины ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Хозяин обещает работнику платить в среднем     рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к     Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Прислать комментарий     Решение

Задача 109692

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Числа Фибоначчи ]
[ Ограниченность, монотонность ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено

Прислать комментарий     Решение

Задача 73632

Темы:   [ Средняя линия треугольника ]
[ Перенос стороны, диагонали и т.п. ]
[ Ограниченность, монотонность ]
[ Предел последовательности, сходимость ]
Сложность: 5-
Классы: 9,10,11

В трапеции ABCD с основаниями AB = a и CD = b проведён отрезок A1B1, соединяющий середины диагоналей. В полученной трапеции проведён отрезок A2B2, тоже соединяющий середины диагоналей, и так далее. Может ли в последовательности длин отрезков AB, A1B1, A2B2,... какое-то число встретиться дважды? Является ли эта последовательность монотонной (возрастающей или убывающей)? Стремится ли она к какому-нибудь пределу?
Прислать комментарий     Решение


Задача 67262

Темы:   [ Арифметическая прогрессия ]
[ Индукция (прочее) ]
[ Предел последовательности, сходимость ]
[ Ограниченность, монотонность ]
Сложность: 5
Классы: 9,10,11

Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?
Прислать комментарий     Решение


Задача 105191

Темы:   [ Периодичность и непериодичность ]
[ Теоремы о среднем значении ]
[ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 6
Классы: 10,11

Для заданных натуральных чисел k0<k1<k2 выясните, какое наименьшее число корней на промежутке [0; 2π) может иметь уравнение вида

sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0

где A1, A2 – вещественные числа.
Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .