Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1221]
|
|
Сложность: 4 Классы: 8,9,10,11
|
В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В вершинах выпуклого n-угольника расставлены m фишек (m > n). За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять
столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.
|
|
Сложность: 4 Классы: 7,8,9
|
В классе 33 человека. У каждого ученика спросили, сколько
у него в классе тезок и сколько однофамильцев (включая родственников).
Оказалось, что среди названных чисел встретились все целые от 0 до 10
включительно. Докажите, что в классе есть два ученика с одинаковыми именем
и фамилией.
|
|
Сложность: 4 Классы: 7,8,9,10
|
На множестве действительных чисел задана операция
* , которая каждым
двум числам
a и
b ставит в соответствие число
a*b .
Известно, что равенство
(
a*b)
*c=a+b+c выполняется для любых
трех чисел
a ,
b и
c . Докажите, что
a*b=a+b .
|
|
Сложность: 4 Классы: 7,8,9
|
Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для
которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1221]