ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число. |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 383]
Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке.
В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы
из каждого города можно было попасть в каждый, минуя не более одного
промежуточного города, и чтобы из каждого города выходило не более пяти дорог.
В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.
Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на 2N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|