Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Докажите, что при гомотетии окружность переходит в окружность.

Вниз   Решение


Можно ли разложить на множители с целыми коэффициентами многочлен  x4 + x3 + x2 + x + 12?

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

ВверхВниз   Решение


Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

ВверхВниз   Решение


а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.

ВверхВниз   Решение


Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением.
Доказать, что существует город, из которого можно проехать в любой другой не более чем по двум дорогам.

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Основание равнобедренного треугольника равно a, угол при вершине равен α. Найдите биссектрису, проведённую к боковой стороне.

ВверхВниз   Решение


Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?

ВверхВниз   Решение


Сколько существует различных пирамид, все рёбра которых равны 1?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 110268

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Пирамида (прочее) ]
Сложность: 3
Классы: 10,11

Сколько существует различных пирамид, все рёбра которых равны 1?
Прислать комментарий     Решение


Задача 78041

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?
Прислать комментарий     Решение


Задача 67375

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Тетраэдр и пирамида (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Теорема Хелли ]
Сложность: 4-
Классы: 10,11

При каком наибольшем $n$ существует выпуклый многогранник с $n$ гранями, обладающий следующим свойством: для любой грани найдется точка вне многогранника, из которой видны остальные $n-1$ грани?
Прислать комментарий     Решение


Задача 87115

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 8,9

В тетраэдре ABCD все плоские углы при вершине A равны по 60o . Докажите, что AB + AC + AD BC + CD + DB .
Прислать комментарий     Решение


Задача 87635

Тема:   [ Трехгранные и многогранные углы (прочее) ]
Сложность: 4
Классы: 10,11

На какое наименьшее число непересекающихся трёхгранных углов можно разбить пространство?
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .