ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
Докажите тождество:
12 + 22 +...+ n2 = Даны натуральные числа x1, ..., xn. Докажите, что число Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна n!·k, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!. Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала? На окружности имеется 21 точка. Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость? Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км? Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с помощью этого набора, кладя гири на обе чашки весов.
Докажите, что при любых k и l многочлен
gk,l(x) является возвратным, то есть
Число рёбер многогранника равно 100. Пусть n и b – натуральные числа. Через V(n, b) обозначим число разложений n на сомножители, каждый из которых больше b (например: Рассматривается произвольный многоугольник (возможно, невыпуклый). (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур). В треугольник ABC вписана окружность, касающаяся
его сторон в точках
A1, B1, C1. Докажите, что если треугольники ABC
и A1B1C1 подобны, то треугольник ABC правильный.
Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2. Известно, что уравнение x4 + ax³ + 2x² + bx + 1 = 0 имеет действительный корень. Докажите неравенство a² + b² ≥ 8. В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки. На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 98]
На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра.
Плоскость, параллельная основанию пирамиды, делит её объём на две равные части. В каком отношении эта плоскость делит боковые рёбра пирамиды?
Площадь основания пирамиды равна 3, объём пирамиды также равен 3. Проведены две плоскости, параллельные основанию пирамиды. Площади получившихся сечений равны 1 и 2. Найдите объём части пирамиды, расположенной между плоскостями.
Объём пирамиды ABCD равен 1. На рёбрах AD , BD , CD взяты соответственно точки K , L и M , причём 2AK = KD , BL = 2LD и 2CM = 3MD . Найдите объём многогранника ABCKLM .
Объём тетраэдра ABCD равен V . На ребре AB взяты точки M и N , а на ребре CD – точки P и Q . Известно, что MN = α AB , PQ = β CD . Найдите объём тетраэдра MNPQ .
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 98]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке