ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Плоскости диагональных сечений пирамиды, основанием которой является параллелограмм, взаимно перпендикулярны. Докажите, что суммы квадратов площадей противоположных боковых граней равны между собой.

   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 538]      



Задача 110520

Темы:   [ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Три шара радиуса r касаются друг друга внешним образом и каждый шар касается внутренним образом сферы радиуса R . При каком соотношении между r и R это возможно? Найдите радиус наибольшего из шаров, касающегося трёх шаров радиуса r внешним образом, а сферы радиуса R внутренним образом.
Прислать комментарий     Решение


Задача 110742

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

Плоскости диагональных сечений пирамиды, основанием которой является параллелограмм, взаимно перпендикулярны. Докажите, что суммы квадратов площадей противоположных боковых граней равны между собой.
Прислать комментарий     Решение


Задача 110743

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Известно, что плоскости треугольников ASC и BSD перпендикулярны друг другу. Найдите площадь грани ASD , если площади граней ASB , BSC и CSD равны соответственно 5, 6 и 7.
Прислать комментарий     Решение


Задача 110744

Темы:   [ Перпендикулярные плоскости ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды SKLMN лежит параллелограмм KLMN . Известно, что плоскости треугольников SKM и SLN перпендикулярны друг другу. Найдите площадь грани NSK , если площади граней KSL , LSM и MSN равны соответственно 4, 6 и 7.
Прислать комментарий     Решение


Задача 110909

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 10. Точки E и F расположены на рёбрах DC и BC соответственно, причём CE=6 , CF=9 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой E , центр основания лежит на прямой SA , а отрезок EF является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .