ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , имеет с отрезком BC единственную общую точку C , проходит через точку D и пересекает отрезок AD в точке E , отличной от точки D . Найдите расстояние от точки K до прямой CD , если AD=48 , BC=12 . Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе? Плоский угол при вершине правильной четырёхугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды. Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β . Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей внутри треугольника, расположена точка K так, что расстояния от неё до сторон AC и BC равны 6 и 24 соответственно. Найдите расстояние от точки K до стороны AB. |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 306]
Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.
Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей внутри треугольника, расположена точка K так, что расстояния от неё до сторон AC и BC равны 6 и 24 соответственно. Найдите расстояние от точки K до стороны AB.
Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.
Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.
Вписанная в треугольник ABC окружность касается его сторон
AC и BC в точках M и N соответственно и пересекает биссектрису
BD в точках P и Q. Найдите отношение площадей треугольников PQM
и PQN, если
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке