ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведены биссектрисы AE и CD . Найдите длины отрезков BD , AE , радиус окружности, описанной около треугольника CDE , и расстояние между центрами окружностей, вписанной в треугольник ABC и описанной около треугольника ABC , если AC=2 , BC=4 , CD = .

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 111081

Темы:   [ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Эйлера ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены биссектрисы AE и CD . Найдите длины отрезков BD , AE , радиус окружности, описанной около треугольника CDE , и расстояние между центрами окружностей, вписанной в треугольник ABC и описанной около треугольника ABC , если AC=2 , BC=4 , CD = .
Прислать комментарий     Решение


Задача 65941

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Сфера, описанная около тетраэдра ]
[ Теорема косинусов ]
[ Формула Эйлера ]
Сложность: 4
Классы: 10,11

Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.

Прислать комментарий     Решение

Задача 64921

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Формула Эйлера ]
[ Теоремы Чевы и Менелая ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 9,10,11

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.

Прислать комментарий     Решение

Задача 64742

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Теорема Паскаля ]
[ Формула Эйлера ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 9,10,11

Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

Прислать комментарий     Решение

Задача 115859

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Формула Эйлера ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10,11

Радиусы описанной и вписанной окружностей треугольника ABC равны R и r; O, I – центры этих окружностей. Внешняя биссектриса угла C пересекает прямую AB в точке P. Точка Q – проекция точки P на прямую OI. Найдите расстояние OQ.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .