|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер. Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$. В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$. Найдите все положительные корни уравнения xx + x1–x = x + 1. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 416]
У отца спросили, сколько лет двум его сыновьям. Отец ответил, что если к произведению их возрастов добавить сумму этих возрастов, то получится 34.
Решите уравнение (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.
Найдите все положительные корни уравнения xx + x1–x = x + 1.
Существуют ли такие натуральные x и y, что x4 – y4 = x³ + y³?
Докажите, что ни при каких натуральных значениях x и y число x8 – x7y + x6y² – ... – xy7 + y8 не является простым.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 416] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|