ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?

Вниз   Решение


Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.

ВверхВниз   Решение


Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными?

ВверхВниз   Решение


Дана окружность S и точка O внутри ее. Рассмотрим все проективные преобразования, которые S отображают в окружность, а O — в ее центр. Докажите, что все такие преобразования отображают на бесконечность одну и ту же прямую.

ВверхВниз   Решение


Король стоит на поле a1 шахматной доски. За ход разрешается сдвинуть его на одну клетку вправо, или на одну клетку вверх, или на одну клетку вправо-вверх. Выигрывает тот, кто поставит короля на клетку h8. Кто выигрывает при правильной игре?

ВверхВниз   Решение


  К концу полугодия у Василия Петрова в журнале стояли такие отметки по математике: 4, 1, 2, 5, 2 Перед тем как выставить полугодовую отметку, учитель математики сказал Васе:
  – Вася, ты можешь выбрать метод, как вывести твою отметку за полугодие. Предлагаю два варианта. Метод А: среднее арифметическое текущих отметок с округлением до целого. Метод Б: медиана текущих отметок.
  Лучший метод для Васи – это такой метод, который даст Васе в полугодии наибольшую отметку. Какой метод для Васи лучший?

ВверхВниз   Решение


На гипотенузе BC прямоугольного треугольника ABC расположена точка D так, что AD BC . Найдите гипотенузу BC , если известно, что AD=DC-BD=h .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 159]      



Задача 111495

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Высота прямоугольного треугольника, опущенная из вершины прямого угла, равна h , разность между проекциями катетов на гипотенузу равна l . Найдите площадь этого треугольника.
Прислать комментарий     Решение


Задача 111501

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике высота, опущенная из вершины прямого угла, равна h , а проекция одного из катетов на гипотенузу равна l . Найдите радиус окружности, касающейся катетов, если центр окружности лежит на гипотенузе.
Прислать комментарий     Решение


Задача 111531

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На гипотенузе BC прямоугольного треугольника ABC расположена точка D так, что AD BC . Найдите гипотенузу BC , если известно, что AD=DC-BD=h .
Прислать комментарий     Решение


Задача 115703

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Найдите высоту прямоугольного треугольника, опущенную на гипотенузу, если известно, что основание этой высоты делит гипотенузу на отрезки, равные 1 и 4.
Прислать комментарий     Решение


Задача 52755

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Хорда окружности равна 10. Через один конец хорды проведена касательная к окружности, а через другой — секущая, параллельная касательной. Найдите радиус окружности, если внутренний отрезок секущей равен 12.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .