Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

Вниз   Решение


Среди комплексных чисел p , удовлетворяющих условию  |p – 25i| ≤ 15,  найти число с наименьшим аргументом.

ВверхВниз   Решение


В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


ВверхВниз   Решение


Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

ВверхВниз   Решение


Мальвина велела Буратино умножить число на 4 и к результату прибавить 15, а Буратино умножил число на 15 и потом прибавил 4, однако, ответ получился верный. Какое это было число?

ВверхВниз   Решение


Дано трёхзначное число, у которого первая и последняя цифра одинаковые.
Доказать, что число делится на 7 тогда и только тогда, когда делится на 7 сумма второй и третьей цифр.

ВверхВниз   Решение


Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 20.

ВверхВниз   Решение


Пусть M={x1, .., x30} – множество, состоящее из 30 различных положительных чисел; An ( 1 n 30 ) – сумма всевозможных произведений различных n элементов множества M . Докажите, что если A15>A10 , то A1>1 .

ВверхВниз   Решение


Сравните числа:  А = 2011·20122012·201320132013  и  В = 2013·20112011·201220122012.

ВверхВниз   Решение


Автобусный билет будем считать счастливым, если между его цифрами можно в нужных местах расставить знаки четырёх арифметических действий и скобки так, чтобы значение полученного выражения равнялось 100. Является ли счастливым билет N123456?

ВверхВниз   Решение


У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.

ВверхВниз   Решение


Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.

ВверхВниз   Решение


В пирамиде ABCD плоские углы DAB , ABC , BCD – прямые. Вершины M , N , P , Q правильного тетраэдра расположены соответственно на рёбрах AC , BC , AB , BD пирамиды ABCD . Ребро MN параллельно ребру AB . Найдите отношение объёмов правильного тетраэдра MNPQ и пирамиды ABCD

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 107]      



Задача 111378

Темы:   [ Площадь сечения ]
[ Правильный тетраэдр ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Ребро правильного тетраэдра SABC равно a . Через вершину A параллельно ребру BC проведена плоскость так, что угол между прямой AB и этой плоскостью равен 30o . Найдите площадь сечения.
Прислать комментарий     Решение


Задача 111379

Темы:   [ Конус ]
[ Правильный тетраэдр ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

Ребро правильного тетраэдра ABCD равно a . На ребре BD расположена точка M так, что 3DM=a . Прямой круговой конус расположен так, что его вершина находится на середине ребра AC , а окружность основания проходит через точку M и пересекает рёбра AB и BC . Найдите радиус основания этого конуса.
Прислать комментарий     Решение


Задача 111392

Темы:   [ Свойства сечений ]
[ Правильный тетраэдр ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 10,11

В правильном тетраэдре ABCD плоскость P пересекает рёбра AB , BC , CD , AD в точках K , L , M , N соответственно. Площади треугольников AKN , KBL , NDM составляют соответственно , , площади грани тетраэдра. В каком отношении плоскость P делит площадь грани BCD ?
Прислать комментарий     Решение


Задача 111586

Темы:   [ Отношение объемов ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В пирамиде ABCD плоские углы DAB , ABC , BCD – прямые. Вершины M , N , P , Q правильного тетраэдра расположены соответственно на рёбрах AC , BC , AB , BD пирамиды ABCD . Ребро MN параллельно ребру AB . Найдите отношение объёмов правильного тетраэдра MNPQ и пирамиды ABCD
Прислать комментарий     Решение


Задача 111588

Темы:   [ Отношение объемов ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В пирамиде MNPQ плоские углы QMN , MNP , NPQ – прямые. Вершины A , B , C , D правильного тетраэдра расположены соответственно на рёбрах MP , NP , NQ , PQ пирамиды MNPQ . Ребро AB параллельно ребру MN . Найдите отношение объёмов правильного тетраэдра ABCD и пирамиды MNPQ
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .