ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана неравнобокая трапеция ABCD. Точка A1 – это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 401]      



Задача 64601

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средняя линия треугольника ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

Прислать комментарий     Решение

Задача 111692

Темы:   [ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10,11

Дана неравнобокая трапеция ABCD. Точка A1 – это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.

Прислать комментарий     Решение

Задача 54605

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Концентрические окружности ]
[ Диаметр, основные свойства ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин всех хорд данной окружности, равных данному отрезку.
Прислать комментарий     Решение


Задача 66656

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

Автор: Хилько Д.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.
Прислать комментарий     Решение


Задача 56701

Темы:   [ Окружности, вписанные в сегмент ]
[ Касательные прямые и касающиеся окружности (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 4-
Классы: 8,9

Две окружности, вписанные в сегмент AB данной окружности, пересекаются в точках M и N. Докажите, что прямая MN проходит через середину C дополнительной дуги данного сегмента AB.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .